

Inverse Function

The Function Reverser

Notation: $f^{-1}(x)$

Swaps inputs and outputs

Only exists when f(x) passes the horizontal line test

Compose with f(x) to get x.

inverse@function.com

About me -

The inverse function $f^{-1}(x)$ of a function f(x) is a function such that f(x) = y if and only if $x = f^{-1}(x)$. The input of f(x) is the output of $f^{-1}(x)$ while the output of f(x) is the input of $f^{-1}(x)$. A function f has an inverse only when *f* is a one-to-one function. Visually, this means that f has an inverse only if the graph of f passes the horizontal line test. We can think of f and f^{-1} as "undoing" each other. $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$.

Attributes -

Usefulness in Solving Problems

Usefulness in Interpreting Problems

Difficulty

Prevalence

Used in Calculus

Capabilities

- Able to reverse the roles of the input and output of a function.
- Undo the affects of a function by composing with that function.
- Solve tor a variable x in the function

y = f(x)

by composing on the left by f^{-1} .

• Provide a formula for the function obtained by reflecting across the line y = xin the plane.

Common Mistakes

- The number -1 in the superscript is not an exponent. It does not mean reciprocal. Instead it refers to the fact that f^{-1} is the inverse function of f under function composition.
- Not every function is named f. The inverse of g(x) is denoted $g^{-1}(x)$. Be sure to use the appropriate function name.
- Not every function has an inverse. For example, the function $h(x) = x^2$ only has an inverse if you restrict the domain of h(x) to be positive. In that case, $h^{-1}(x) = \sqrt{x}.$

Applications

- Temperature Conversion The function $f(x) = \frac{9}{5}x + 32$ takes an input temperature of x degrees Celcius and outputs the temperature f(x) in degrees Fahrenheit. The inverse function $f^{-1}(x) = \frac{5}{9}(x-32)$ takes an input of x degrees Fahrenheit and outputs the temperature in $f^{-1}(x)$ degrees Celcius.
- Dating Ages The minimum dating age formula $A(x) = \frac{1}{2}x + 7$ inputs someone's age x and outputs the minimum age of an individual they could date (says some rule on the internet). The function $A^{-1}(x) = 2(x-7)$ inputs the age of an individual and outputs the maximum age of someone they could date.
- Geometry A cube of side length x has a surface area given by $A(x) = 6x^2$ and a volume given by $V(x) = x^3$. From these formulas we can derive many facts.
 - The formula $A^{-1}(x)=\sqrt{rac{x}{6}}$ inputs the surface area of the cube and outputs the side length.
 - The formula $V^{-1}(x) = \sqrt[3]{x}$ inputs the volume of the cube and outputs the side length.
 - The function that inputs the cube's volume and ouputs the surface area is $A(V^{-1}(x)) = 6(\sqrt[3]{x})^2$.
 - · The function that inputs the cube's surface area and ouputs the volume is $V(A^{-1}(x)) = (\sqrt{\frac{x}{6}})^3$.

Example

Methods

How do we find an inverse function $f^{-1}(x)$ from a function f(x)?

Steps

- 1. Start with an expression y = f(x). 1. $y = (2x - 3)^3$. 2. Swap variables to get x = f(y). **2.** $x = (2y - 3)^3$. 3. $y = \frac{\sqrt[3]{x+3}}{2}$. 4. $f^{-1}(x) = \frac{\sqrt[3]{x+3}}{2}$. 3. Solve for y.
- 4. Replace y with $f^{-1}(x)$.